INTERNET-DRAFT

Intended Status: Experimental Expires: April 23, 2015

Victor Demjanenko David Satterlee (VOCAL Technologies, Ltd.) October 20, 2014

RTP Payload Format for MELPe Codec draft-demjanenko-payload-melpe-01

Abstract

This document describes the RTP payload format for the Mixed Excitation Linear Prediction Enhanced (MELPe) speech coder algorithm developed by Atlanta Signal Processing (ASPI), Texas Instruments (TI), SignalCom (now Microsoft) and Thales Communications with noise preprocessor contributions from AT&T under contract with NSA/DOD as international NATO Standard STANAG 4591. All three different speech encoding rates and sample frames sizes are included. Comfort noise procedures and packet loss concealment are detailed. Also, within the document there are included necessary details for the use of MELP with SDP.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/lid-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1	Introduction	•	3
	1.1 Terminology	•	3
2	Background		3
3	RTP Payload Format		4
	3.1 MELPe Bitstream Definition	•	5
	3.1.1 2400 bps Bitstream Structure	•	5
	3.1.2 1200 bps Bitstream Structure		
	3.1.3 600 bps Bitstream Structure	•	11
	3.2 MELPe Comfort Noise Bitstream Definition	•	14
	3.3 Multiple MELPe frames in a RTP packet		16
4	MAPPING TO SDP PARAMETERS	•	18
5	DISCONTINIOUS TRANSMISSION	•	20
6	PACKET LOSS CONCEALMENT	•	20
7	Security Considerations	•	21
8	IANA Considerations	•	21
9	References	•	21
	9.1 Normative References		21
	9.2 Informative References	•	22
Αı	uthors' Addresses	•	22

1 Introduction

This document describes how compressed MELPe speech as produced by the MELPe codec may be formatted for use as an RTP payload. Details are provided to packetize the three different codec rate data frames (2400, 1200, and 600) into RTP packets. The sender may send one or more codec data frames per packet, depending on the application scenario or based on the transport network condition, bandwidth restriction, delay requirements and packet-loss tolerance.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2 Background

The MELP speech coder was developed by the US military as an upgrade from LPC-based CELP standard vocoder for low bit-rate communications [MELP]. MELP was further enhanced and subsequently adopted by NATO as MELPe for use by its members and Partnership for Peace countries for military and other governmental communications [MELPE]. Commercial/civilian applications have arisen because of the low bitrate property of MELPe with its (relatively) high intelligibility. As such MELPe is being used in a variety of wired and radio communications systems. VoIP/SIP systems need to transport MELPe without decoding and re-encoding in order to preserve its intelligibility. Hence it is desirable and necessary to define the proper payload formatting and use conventions of MELPe in RTP payloads.

The MELPe codec [MELPE] supports three different vocoder rates; 2400, 1200, and 600 bps. The basic 2400 bps rate vocoder uses a 22.5 ms frame of speech consisting of 180 8000 Hz, 16-bit speech samples. The 1200 and 600 bps rate vocoders uses respectively three and four 22.5 ms frames of speech each. These reduced rate vocoders internally use multiple 2400 bps parameter sets with further processing to strategically remove redundancy. The payload sizes for each of the rates are 54, 81, and 54 bits respectively for the 2400, 1200, and 600 bps frames. Dynamic rate switching is permitted but only if supported by both endpoints.

The MELPe algorithm distinguishes between voiced and un-voiced speech and encodes each differently. Unvoiced speech can be coded with fewer information bits for the same quality. Forward error correction (FEC) is applied to the 2400 bps codec unvoiced speech for better protection of the subtle differences in signal reconstruction. The lower bit rate coders do not allocate any bits for FEC and rely on strong error protection and correction in the communications channel.

Comfort noise handling for MELPe is recommended to follow SCIP-210 Appendix B [SCIP210]. After VAD no longer indicates the presence of speech/voice, a grace period of a minimum of two comfort noise vocoder fames are to be transmitted. The contents of the comfort noise frames is described in the next section.

Packet loss concealment (PLC) exploits the FEC (and more precisely, double bits errors of the pitch/voicing parameter) of the 2400 bps speech coder. The pitch/voicing parameter has a sparse set of permitted values. A value of zero indicates a non-voiced frame. At least three bits are set for all valid pitch parameters. The PLC erasure indication utilizes any of the errored encodings of a nonvoiced frame as will be described infra.

3 RTP Payload Format

The MELPe codec uses 22.5, 67.5 or 90 ms frames with a sampling rate clock of 8 kHz, so the RTP timestamp MUST be in units of 1/8000 of a second.

The RTP payload for MELPe has the format shown in the figure below. No addition header specific to this payload format is required.

This format is intended for the situations where the sender and the receiver send one or more codec data frames per packet. The RTP packet looks as follows:

Figure 1 - Packet format diagram

The RTP header of the packetized encoded MELPe speech has the expected values as described in [RFC3550]. The usage of M bit SHOULD be as specified in the applicable RTP profile, for example, RFC 3551 [RFC3551], where [RFC3551] specifies that if the sender does not suppress silence (i.e., sends a frame on every frame interval), the M bit will always be zero. When more then one codec data frame is present in a single RTP packet, the timestamp is, as always, that of the oldest data frame represented in the RTP packet.

The assignment of an RTP payload type for this new packet format is outside the scope of this document, and will not be specified here. It is expected that the RTP profile for a particular class of applications will assign a payload type for this encoding, or if that is not done, then a payload type in the dynamic range shall be chosen by the sender.

3.1 MELPe Bitstream Definition

The total number of bits used to describe one frame of 2400 bps speech is 54, which fits in 7 octets (with two unused bits). For the 1200 bps speech the total number of bits used is 81, which fits in 11 octets (with seven unused bits). For the 600 bps speech the total number of bits used is 54, which fits in 7 octets (with two unused bits). Unused bits are coded as described in 3.3 in support of dynamic rate switching.

In the MELPe bitstream definition, the most significant bits are considered priority bits. The intention was that these bits receive greater protection in the underlying communications channel. For IP networks, such additional protection is irrelevant. However, for convenience of interoperable gateway devices, the bitstreams will be presented identically in IP networks.

3.1.1 2400 bps Bitstream Structure

According to Table 3 of [MELPE], the 2400 bit/s MELPe bit transmission order (bit priority is not shown for clarity) is the following:

+	Voiced	++ Unvoiced
B_01	g20	g20
B_02	BP0	FEC10
B_03	P0	P0

B_04	LSF20	LSF20
B_05	LSF30	LSF30
B_06	g23	g23
B_07	g24	g24
B_08	LSF35	LSF35
B_09	g21	g21
B_10	g22	g22
B_11	P4	P4
B_12	LSF34	LSF34
B_13	P5	P5
B_14	P1	P1
B_15	P2	P2
B_16	LSF40	LSF40
B_17	P6	P6
B_18	LSF10	LSF10
B_19	LSF16	LSF16
B_20	LSF45	LSF45
B_21	P3	P3
B_22	LSF15	LSF15
B_23	LSF14	LSF14
B_24	LSF25	LSF25
B_25	BP3	FEC13
B_26	LSF13	LSF13
B_27	LSF12	LSF12
B_28	LSF24	LSF24
B_29	LSF44	LSF44
B_30	FM0	FEC40
B_31	LSF11	LSF11
B_32	LSF23	LSF23
B_33	FM7	FEC22
B_34	FM6	FEC21
B_35	FM5	FEC20
B_36	g11	g11
B_37	g10	g10
B_38	BP2	FEC12
B_39	BP1	FEC11
B_40	LSF21	LSF21
++ B_41 B_42 B_43 B_44 B_45 B_46	LSF33 LSF22 LSF32 LSF31 LSF43 LSF42	LSF33 LSF22 LSF32 LSF31 LSF43 LSF42

B_47	AF	FEC42
B_48	LSF41	LSF41
++		++
B_49	FM4	FEC32
B_50	FM3	FEC31
B_51	FM2	FEC30
B_52	FM1	FEC41
B_53	g12	g12
B_54	SYNC	SYNC
++	+	+

NOTES: g = Gain BP = Bandpass Voicing P = Pitch/Voicing LSF = Line Spectral Frequencies FEC = Forward Error Correction Parity Bits FM = Fourier Magnitudes AF = Aperiodic Flag

Bit 1 = least significant bit of data set

Table 3.1 - The bitstream definition for MELPe 2400 bps.

The 2400 bps MELPe RTP payload is constructed as per Figure 2. Note that bit 1 is transmitted first and bit 54 last with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits 48 to 54 respectively.

MSB 7	6	5	4	3	2	1	LSB Ø
++ B_08	B_07	B_06	+ B_05	++ B_04	B_03	+ B_02	++ B_01
B_16	B_15	B_14	B_13	B_12	B_11	B_10	B_09
B_24	B_23	B_22	B_21	B_20	B_19	B_18	B_17
B_32	B_31	B_30	B_29	B_28	B_27	B_26	B_25
++ B_40	B_39	B_38	B_37	B_36	B_35	B_34	B_33
B_48	B_47	B_46	B_45	B_44	B_43	B_42	B_41
RSVA	RSVB	B_54	B_53	B_52	B_51	B_50 +	B_49 ++

Demjanenko, Satterlee Expires April 23, 2015

[Page 7]

Figure 2 - Packed MELPe 2400 bps payload octets.

3.1.2 1200 bps Bitstream Structure

According to Tables D9a and D9b of [MELPE], the 1200 bit/s MELPe bit transmission order is the following:

+	+	++
Bit	Modes 1-4	Mode 5
	(Voiced)	(Unvoiced)
+ B_01	 Syn	Syn
B 02	Pitch&UV0	Pitch&UV0
B 03	Pitch&UV1	Pitch&UV1
B 04	Pitch&UV2	Pitch&UV2
B 05	Pitch&UV3	Pitch&UV3
В 06	Pitch&UV4	Pitch&UV4
B 07	Pitch&UV5	Pitch&UV5
В <u></u> 08	Pitch&UV6	Pitch&UV6
+ B 09	+ Pitch&UV7	++ Pitch&UV7
B 10	Pitch&UV8	Pitch&UV8
B 11	Pitch&UV9	Pitch&UV9
B 12	Pitch&UV10	Pitch&UV10
B 13	Pitch&UV11	Pitch&UV11
B 14	LSP0	LSP0
B 15	LSP1	LSP1
B_16	LSP2	LSP2
+ B 17	+ LSP3	++ LSP3
B 18	LSP4	LSP4
B 19	LSP5	LSP5
B 20	LSP6	LSP6
B 21	LSP7	LSP7
B_22	LSP8	LSP8
B 23	LSP9	LSP9
B_24	LSP10	LSP10
+ B 25	+ LSP11	++ LSP11
B 26	LSP12	LSP12
B 27	LSP13	LSP13
B 28	LSP14	LSP14
B 29	LSP15	LSP15
B 30	LSP16	LSP16
B 31	LSP17	LSP17

.	L	•
B_33 B_34 B_35 B_36 B_37 B_38 B_38 B_39 B_40	LSP19 LSP20 LSP21 LSP22 LSP23 LSP24 LSP25 LSP26	LSP19 LSP20 LSP21 LSP22 LSP23 LSP24 LSP25 LSP26
B_41 B_42 B_43 B_44 B_45 B_46 B_47 B_48	LSP27 LSP28 LSP29 LSP30 LSP31 LSP32 LSP33 LSP34	GAINØ GAIN1 GAIN2 GAIN3 GAIN4 GAIN5 GAIN6 GAIN7
B_49 B_50 B_51 B_52 B_53 B_54 B_55 B_56	LSP35 LSP36 LSP37 LSP38 LSP39 LSP40 LSP41 LSP42	GAIN8 GAIN9
B_57 B_58 B_59 B_60 B_61 B_62 B_63 B_64	GAIN0 GAIN1 GAIN2 GAIN3 GAIN4 GAIN5 GAIN6 GAIN7	
B_65 B_66 B_67 B_68 B_69 B_70 B_71 B_72	GAIN8 GAIN9 BP0 BP1 BP2 BP3 BP4 BP5	
B_73 B_74	JITTER FS0	

B_75 B_76 B_77 B_78 B_79 B_80	FS1 FS2 FS3 FS4 FS5 FS6	
B_80 + B_81 +	FS6 + FS7 +	 ++

NOTES: BP = Band pass voicing FS = Fourier magnitudes

Table 3.2 - The bitstream definition for MELPe 1200 bps.

The 1200 bps MELPe RTP payload is constructed as per Figure 3. Note that bit 1 is transmitted first and bit 81 last with all other bits in sequence. When filling octets, the least significant bit of the eleventh octet is filled with bit 81.

MSB 7	6	5	4	3	2	1	LSB 0
B_08	B_07	B_06	B_05	B_04	B_03	B_02	B_01
B_16	B_15	B_14	' B_13	B_12	' B_11	B_10	В_09
B_24	B_23	B_22	B_21	B_20	' B_19	B_18	B_17
B_32	B_31	В_30	B_29	B_28	B_27	B_26	B_25
B_40	B_39	B_38	B_37	B_36	B_35	B_34	B_33
B_48	B_47	B_46	B_45 +	B_44	B_43 +	B_42 +	B_41
B_56	B_55	B_54 +	B_53 +	B_52	B_51 +	В_50 +	B_49
B_64	B_63	B_62	B_61 +	B_60	B_59 +	B_58 +	B_57 ++
B_72	B_71	B_70 +	B_69 +	B_68	B_67 +	B_66	B_65
B_80	B_79	B_78 +	B_77 +	B_76	B_75	B_74 +	B_73
RSVA ++	RSVB	RSVC +	RSV0 +	RSV0	RSV0 +	RSV0 +	B_81 ++

Figure 3 - Packed MELPe 1200 bps payload octets.

3.1.3 600 bps Bitstream Structure

According to Tables M-11 to M-16 of [MELPE], the 600 bit/s MELPe bit transmission order (bit priority is not shown for clarity) is the following:

+	+	+	++
Bit	Mode 1	Mode 2	Mode 3
	(Voiced)	(voiced)	(voiced)
B_01	Voicing (4)	Voicing (4)	Voicing (4)
B_02	Voicing (3)	Voicing (3)	Voicing (3)
B_03	Voicing (2)	Voicing (2)	Voicing (2)
B_04	Voicing (1)	Voicing (1)	Voicing (1)
B_05	Voicing (0)	Voicing (0)	Voicing (0)
B_06	LSF1,4 (3)	Pitch (5)	Pitch (7)
B_07	LSF1,4 (2)	Pitch (4)	Pitch (6)
B_08	LSF1,4 (1)	Pitch (3)	Pitch (5)
B_09	LSF1,4 (0)	Pitch (2)	Pitch (4)
B_10	LSF1,3 (3)	Pitch (1)	Pitch (3)
B_11	LSF1,3 (2)	Pitch (0)	Pitch (2)
B_12	LSF1,3 (1)	LSF1,3 (3)	Pitch (1)
B_13	LSF1,3 (0)	LSF1,3 (2)	Pitch (0)
B_14	LSF1,2 (3)	LSF1,3 (1)	LSF1,3 (3)
B_15	LSF1,2 (2)	LSF1,3 (0)	LSF1,3 (2)
B_16	LSF1,2 (1)	LSF1,2 (3)	LSF1,3 (1)
B_17	LSF1,2 (0)	LSF1,2 (2)	LSF1,3 (0)
B_18	LSF1,1 (5)	LSF1,2 (1)	LSF1,2 (4)
B_19	LSF1,1 (4)	LSF1,2 (0)	LSF1,2 (3)
B_20	LSF1,1 (3)	LSF1,1 (5)	LSF1,2 (2)
B_21	LSF1,1 (2)	LSF1,1 (4)	LSF1,2 (1)
B_22	LSF1,1 (1)	LSF1,1 (3)	LSF1,2 (0)
B_23	LSF1,1 (0)	LSF1,1 (2)	LSF1,1 (5)
B_24	LSF2,4 (3)	LSF1,1 (1)	LSF1,1 (4)
B_25	LSF2,4 (2)	LSF1,1 (0)	LSF1,1 (3)
B_26	LSF2,4 (1)	LSF2,3 (3)	LSF1,1 (2)
B_27	LSF2,4 (0)	LSF2,3 (2)	LSF1,1 (1)
B_28	LSF2,3 (3)	LSF2,3 (1)	LSF1,1 (0)
B_29	LSF2,3 (2)	LSF2,3 (0)	LSF2,3 (3)
B_30	LSF2,3 (1)	LSF2,2 (4)	LSF2,3 (2)
B_31	LSF2,3 (0)	LSF2,2 (3)	LSF2,3 (1)

B_32	LSF2,2 (3)	LSF2,2 (2)	LSF2,3 (0)
B_33 B_34 B_35 B_36 B_37 B_38 B_39 B_40	LSF2,2 (2) LSF2,2 (1) LSF2,2 (0) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1)	LSF2,2 (1) LSF2,2 (0) LSF2,1 (6) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1)	LSF2,2 (4) LSF2,2 (3) LSF2,2 (2) LSF2,2 (1) LSF2,2 (0) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3)
+ B_41 B_42 B_43 B_44 B_45 B_46 B_47 B_48	LSF2,1 (0) GAIN2 (5) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0) GAIN1 (6)	LSF2,1 (0) GAIN2 (5) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0) GAIN1 (6)	LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0)
+ B_49 B_50 B_51 B_52 B_53 B_54 +	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)

Table 3.3a - The bitstream definition for MELPe 600 bps (part 1 of 2).

+	+	+	++
Bit	Mode 4	Mode 5	Mode 6
	(voiced)	(voiced)	(voiced)
B_01	Voicing (4)	Voicing (4)	Voicing (4)
B_02	Voicing (3)	Voicing (3)	Voicing (3)
B_03	Voicing (2)	Voicing (2)	Voicing (2)
B_04	Voicing (1)	Voicing (1)	Voicing (1)
B_05	Voicing (0)	Voicing (0)	Voicing (0)
B_06	Pitch (7)	Pitch (7)	Pitch (7)
B_07	Pitch (6)	Pitch (6)	Pitch (6)
B_08	Pitch (5)	Pitch (5)	Pitch (5)
+	+	+	++
B_09	Pitch (4)	Pitch (4)	Pitch (4)
B_10	Pitch (3)	Pitch (3)	Pitch (3)
B_11	Pitch (2)	Pitch (2)	Pitch (2)
B_12	Pitch (1)	Pitch (1)	Pitch (1)

B_13	Pitch (0)	Pitch (0)	Pitch (0)
B_14	LSF1,3 (3)	LSF1,3 (3)	LSF1,3 (3)
B_15	LSF1,3 (2)	LSF1,3 (2)	LSF1,3 (2)
B_16	LSF1,3 (1)	LSF1,3 (1)	LSF1,3 (1)
B_17	LSF1,3 (0)	LSF1,3 (0)	LSF1,3 (0)
B_18	LSF1,2 (3)	LSF1,2 (4)	LSF1,2 (4)
B_19	LSF1,2 (2)	LSF1,2 (3)	LSF1,2 (3)
B_20	LSF1,2 (1)	LSF1,2 (2)	LSF1,2 (2)
B_21	LSF1,2 (0)	LSF1,2 (1)	LSF1,2 (1)
B_22	LSF1,1 (5)	LSF1,2 (0)	LSF1,2 (0)
B_23	LSF1,1 (4)	LSF1,1 (5)	LSF1,1 (6)
B_24	LSF1,1 (3)	LSF1,1 (4)	LSF1,1 (5)
B_25	LSF1,1 (2)	LSF1,1 (3)	LSF1,1 (4)
B_26	LSF1,1 (1)	LSF1,1 (2)	LSF1,1 (3)
B_27	LSF1,1 (0)	LSF1,1 (1)	LSF1,1 (2)
B_28	LSF2,3 (3)	LSF1,1 (0)	LSF1,1 (1)
B_29	LSF2,3 (2)	LSF2,3 (3)	LSF1,1 (0)
B_30	LSF2,3 (1)	LSF2,3 (2)	LSF2,3 (3)
B_31	LSF2,3 (0)	LSF2,3 (1)	LSF2,3 (2)
B_32	LSF2,2 (4)	LSF2,3 (0)	LSF2,3 (1)
B_33	LSF2,2 (3)	LSF2,2 (4)	LSF2,3 (0)
B_34	LSF2,2 (2)	LSF2,2 (3)	LSF2,2 (4)
B_35	LSF2,2 (1)	LSF2,2 (2)	LSF2,2 (3)
B_36	LSF2,2 (0)	LSF2,2 (1)	LSF2,2 (2)
B_37	LSF2,1 (6)	LSF2,2 (0)	LSF2,2 (1)
B_38	LSF2,1 (5)	LSF2,1 (5)	LSF2,2 (0)
B_39	LSF2,1 (4)	LSF2,1 (4)	LSF2,1 (6)
B_40	LSF2,1 (3)	LSF2,1 (3)	LSF2,1 (5)
+ B_41 B_42 B_43 B_44 B_45 B_46 B_47 B_48	LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0)	LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0)	LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN1 (8) GAIN1 (7) GAIN1 (6)
+ B_49 B_50 B_51 B_52 B_53 B_54 +	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)

Demjanenko, Satterlee Expires April 23, 2015

[Page 13]

Notes: xxxx (0) = LSB xxxx (nbits-1) = MSB LSF1,p = MSVQ indice of the pth stage of the two first frames LSF2,p = MSVQ indice of the pth stage of the two last frames GAIN1 = VQ/MSVQ indice of the 1st stage GAIN2 = MSVQ indice of the 2nd stage

Table 3.3b - The bitstream definition for MELPe 600 bps (part 2 of 2).

The 600 bps MELPe RTP payload is constructed as per Figure 4. Note that bit 1 is transmitted first and bit 54 last with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits 48 to 54 respectively.

MSB 7	6	5	4	3	2	1	LSB 0
B_08	B_07	B_06	B_05	B_04	B_03	B_02	B_01
B_16	B_15	B_14	B_13	B_12	B_11	B_10	B_09
B_24	B_23	B_22	B_21	B_20	B_19	B_18	B_17
B_32	B_31	В_30	B_29	B_28	B_27	B_26	B_25
B_40	B_39	B_38	B_37	B_36	B_35	B_34	B_33
B_48	B_47	B_46	B_45	B_44	B_43	B_42	B_41
RSVA ++-	RSVB	B_54 +	B_53	B_52 ++	B_51	B_50 +	B_49 ++

Figure 4 - Packed MELPe 600 bps payload octets.

3.2 MELPe Comfort Noise Bitstream Definition

Table B.3-1 of [SCIP210] identifies the usage of MELPe 2400 bps parameters for conveying comfort noise.

+-----+ | MELPe Parameter | Value | +-----+

<pre> msvq[0] (line spectral frequencies)</pre>	* See Note
<pre> msvq[1] (line spectral frequencies)</pre>	Set to 0
<pre> msvq[2] (line spectral frequencies)</pre>	Set to 0
<pre> msvq[3] (line spectral frequencies)</pre>	Set to 0
fsvq (Fourier magnitudes)	Set to 0
gain[0] (gain)	Set to 0
gain[1] (gain)	* See Note
<pre>pitch (pitch - overall voicing)</pre>	Set to 0
bp (bandpass voicing)	Set to 0
af (aperiodic flag/jitter index)	Set to 0
sync (sync bit)	Alternations

Note: The default value shall be the respective parameters from the vocoder frame. It is recommended that msvq[0] and gain[1] values be derived by averaging the respective parameter from some number of previous vocoder frames.

Table 3.4 - MELPe Comfort Noise Parameters

Since only msvq[0] (also known as LSF1x or the first LSP) and gain[1] (also known as g2x or the second gain) are required, the following bit order is used for comfort noise frames.

L
Comfort Noise
LSF10
LSF11
LSF12
LSF13
LSF14
LSF15
LSF16
g20

++	+	
B_09	g21	
B_10	g22	
B_11	g23	
B_12	g24	
B_13	SYNC	
++	+	

NOTES: g = Gain LSF = Line Spectral Frequencies

Table 3.5 - The bitstream definition for MELPe Comfort Noise.

The Comfort Noise MELPe RTP payload is constructed as per Figure 5. Note that bit 1 is transmitted first and bit 13 last with all other bits in sequence. When filling octets, the least significant bits of the second octet are filled with bits 9 to 13 respectively.

						1	
++ B_08 +	B_07	B_06	B_05	B_04	B_03	B_02	B_01
RSVA +	RSVB	RSVC	B_13	B_12	B_11	B_10	B_09

Figure 5 - Packed MELPe Comfort Noise payload octets.

3.3 Multiple MELPe frames in a RTP packet

A MELPe RTP packet may consist of zero or more MELPe coder frames, followed by zero or one MELPe Comfort Noise frames. The presence of a comfort noise frame can be deduced from the length of the RTP payload. The default packetization interval is one coder frame (22.5, 67.5 or 90 ms) according to the coder rate (2400, 1200 or 600 bps). For some applications, a longer packetization interval may be required to reduce the packet rate.

All MELPe frames in a single RTP packet MUST be of the same coder rate. Dynamic switching between frame rates within an RTP stream may be permitted (if supported by both ends) provided that reserved bits, RSVA, RSVB, and RSVC are filled in as per Table 3.6. If rate switching is not used, all reserved bits are encoded as 0 by the sender and ignored by the receiver. (RSV0 is always coded as 0).

+			F+
Coder Rate	RSVA	RSVB	RSVC
2400 bps	0	0	N/A
1200 bps	1	0	0
600 bps	0	1	N/A
Comfort Noise	1	0	
(reserved)	1	1	N/A
T			-

Table 3.6 - MELPe Frame Rate Indicators.

It is important to observe that senders have the following additional restrictions:

SHOULD NOT include more MELPe frames in a single RTP packet than will fit in the MTU of the RTP transport protocol.

Frames MUST NOT be split between RTP packets.

It is RECOMMENDED that the number of frames contained within an RTP packet is consistent with the application. For example, in a telephony and other real time applications where delay is important, then the fewer frames per packet the lower the delay, whereas for a bandwidth constrained links or delay insensitive streaming messaging application, more than one or many frames per packet would be acceptable.

Information describing the number of frames contained in an RTP packet is not transmitted as part of the RTP payload. The way to determine the number of MELPe frames is to count the total number of octets within the RTP packet, and divide the octet count by the number of expected octets per frame (7/11/7 per frame). Keep in mind the last frame may be a 2 octet comfort noise frame.

When dynamic rate switching is used and more than one frame is contained in a RTP packet, it is recommended to inspect the coder rate bits contained in the last octet. If the coder rate indicates a Comfort Noise frame, then inspect the third last octet for the coder rate. All MELPe speech frames in the RTP packet will be of this same coder rate.

4 MAPPING TO SDP PARAMETERS

The information carried in the MIME media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [RFC2327], which is commonly used to describe RTP sessions. When SDP is used to specify sessions employing the MELPe codec, the mapping is as follows:

o The MIME type ("audio") goes in SDP "m=" as the media name. o The MIME subtype (payload format name) goes in SDP "a=rtpmap" as the encoding name.

o The parameter "rate" goes in the SDP "a=fmtp" attribute by copying it directly from the MIME media type string as "rate=value" or "rate=value1,value2" or "rate=value1,value2,value3".

When conveying information by SDP, the encoding name SHALL be "MELP" (the same as the MIME subtype). Alternative encoding name types, "MELP2400", "MELP1200", and "MELP600", may be used in SDP to convey fixed rate configurations. These names have been observed in systems that do not support dynamic frame rate switching as specified by the parameter, "rate".

An example of the media representation in SDP for describing MELPe might be:

m=audio 49120 RTP/AVP 97
a=rtpmap:97 MELP/8000

An alternative example of SDP for fixed rate configurations might be:

m=audio 49120 RTP/AVP 97 100 101 102
a=rtpmap:97 MELP/8000
a=rtpmap:100 MELP2400/8000
a=rtpmap:101 MELP1200/8000
a=rtpmap:102 MELP600/8000

If the encoding name "MELP" is received without a "rate" parameter, the fixed coder rate of 2400 MUST be used. The alternate encoding names, "MELP2400", "MELP1200", and "MELP600" directly specify the MELPe coder rate of 2400, 1200, and 600 respectively and MUST not specify a "rate" parameter.

A remote MELPe encoder SHALL receive "rate" parameter in the SDP "a=fmtp" attribute by copying them directly from the MIME media type string as a semicolon separated with parameter=value, where parameter is "rate", and value can be one or more of 2400, 1200, and 600 separated by commas (where each rate value indicates the corresponding MELPe coder). An example of the media representation in

SDP for describing MELPe when all three coder rates are supported might be:

m=audio 49120 RTP/AVP 97 a=rtpmap:97 MELP/8000 a=fmtp:97 rate=2400,600,1200

It is important to emphasize the bi-directional character of the "rate" parameter - both sides of a bi-directional session MUST use the same "rate" value.

The offer contains the rates supported by the offerer listed in its preferred order. The answerer may agree to any rate by listing the rate first in the answerer response. Additionally the answerer may indicate any secondary rate or rates that it supports. The initial rate used by both parties SHALL be the first bandwidth rate specified in the answerer response.

For example if offerer rates are "2400,600", and answer rates are "600,2400", the initial rate is 600. If other rates are provided by the answerer, any common rate between offer and answer may be used at any time in the future, Activation of these other common rates is beyond the scope of this document.

The use of a lower rate is often important for a case such as when one end point utilizes a bandwidth constrained link (e.g. 1200 bps radio link or slower), where only the lower coder rate will work.

Parameter ptime can not be used for the purpose of specifying MELPe operating mode, due to fact that for the certain values it will be impossible to distinguish which mode is about to be used (e.g. when ptime=67, it would be impossible to distinguish if packet is carrying 1 frames of 67.5 ms or 3 frames of 22.5 ms etc.).

When SDP is used for broadcast MELPe audio, multiple MELPe rtpmap values (such as 97, 98, and 99 as used below) may be used to convey MELPe coded voice at different rates. The receiver can then select an appropriate MELPe codec by using 97, 98, or 99.

m=audio 49120 RTP/AVP 97 98 99 a=rtpmap:97 MELP/8000 a=fmtp:97 rate=2400 a=rtpmap:98 MELP/8000 a=fmtp:98 rate=1200 a=rtpmap:99 MELP/8000 a=fmtp:99 rate=600

Note that the payload format (encoding) names are commonly shown in

upper case. MIME subtypes are commonly shown in lower case. These names are case-insensitive in both places. Similarly, parameter names are case-insensitive both in MIME types and in the default mapping to the SDP a=fmtp attribute

5 DISCONTINIOUS TRANSMISSION

A primary application of MELPe is for radio communications of voice conversations and discontinuous transmissions are normal. When MELPe is used in an IP network, MELPe RTP packet transmissions may cease and resume frequently. RTP SSRC gaps indicate lost packets to be filled by PLC while abrupt RTP timestamp changes indicate intended discontinuous transmission.

If a MELPe coder so desires, it may send a comfort noise frame as per SCIP-210 Appendix B [SCIP210] prior to ceasing transmission. A receiver may optionally use comfort noise during its silence periods. No SDP negotiations are required.

6 PACKET LOSS CONCEALMENT

MELPe packet loss concealment (PLC) uses the special properties and coding for the pitch/voicing parameter of the MELPe 2400 bps coder. The PLC erasure indication may utilize any of the errored encodings of a non-voiced frame as identified in Table 1 of [MELPE]. For the sake of simplicity it is recommended to use a code value of 3 for the pitch/voicing parameter (represented by the bits P6 to P0 in Table 3.1). Hence, set bits P0 and P1 to one and bits P2, P3, P4, P5, and P6 to zero.

When using PLC in a 1200 bps or 600 bps mode, the MELPe 2400 bps decoder is called three or four times respectively to cover the loss of a MELPe frame.

7 Security Considerations

RTP packets using the payload format defined in this specification are subject to the general security considerations discussed in [RFC3550] and any appropriate profile (e.g. [RFC2736]).

As this format transports encoded speech, the main security issues include confidentiality and authentication of the speech itself. The payload format itself does not have any built-in security mechanisms. Confidentiality of the media streams is achieved by encryption, therefore external mechanisms, such as SRTP [RFC3711], MAY be used for that purpose. The data compression used with this payload format is applied end-to-end; hence encryption may be performed after compression with no conflict between the two operations.

A potential denial-of-service threat exists for data encoding using compression techniques that have non-uniform receiver-end computational load. The attacker can inject pathological datagrams into the stream which are complex to decode and cause the receiver to become overloaded. However, the encodings covered in this document do not exhibit any significant non-uniformity.

<Security considerations text>

8 IANA Considerations

<IANA considerations text>

9 References

9.1 Normative References

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", IETF RFC 3550, July 2003.

[RFC3551] H. Schulzrinne, S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control" IETF RFC 3551, July 2003.

[RFC2327] M. Handley and V. Jacobson, "SDP: Session Description Protocol", IETF RFC 2327, April 1998

[RFC2736] M. Handley and C. Perkins, "Guidelines for Writers of RTP

Payload Format Specifications", BCP 36, RFC 2736, December 1999.

[RFC3711] Baugher, et al., "The Secure Real Time Transport Protocol", IETF RFC 3711, March 2004.

9.2 Informative References

[MELP] Department of Defense Telecommunications Standard, "Analog-to-Digital Conversion of Voice by 2,400 Bit/Second Mixed Excitation Linear Prediction (MELP)", MIL-STD-3005, December 1999.

[MELPE] North Atlantic Treaty Organization (NATO), "The 600 Bit/S, 1200 Bit/S and 2400 Bit/S NATO Interoperable Narrow Band Voice Coder", STANAG No. 4591, January 2006.

[SCIP210] National Security Agency, "SCIP Signaling Plan", SCIP-210, December 2007.

Authors' Addresses

Victor Demjanenko, Ph.D. VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 USA Phone: +1 716 688 4675 Email: victor.demjanenko@vocal.com

David Satterlee VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 USA Phone: +1 716 688 4675 Email: david.satterlee@vocal.com