
San Antonio, Texas T1E1.4/98-300

August 31-September 4, 1998

Notice

This contribution has been prepared to assist the Standards Committee T1-Telecommunications.
This document is offered to the committee as a basis for discussion and is not a binding proposal
on VoCAL Technologies Ltd.. The requirements are subject to change after further study. VoCAL
Technologies Ltd. specifically reserves the right to add to, amend, or withdraw the statements
contained herein.

Project: T1E1.4: ADSL

Source: VOCAL Technologies Ltd. (http://www.vocal.com)

Title: Text to include an optional Concatenated Convolutional Codes in the ANSI
 T1.413 Issue 2

Contact: Victor Demjanenko, Ph. D. E: victord@vocal.com
 Alberto Torres, Ph. D. E: jatorres@vocal.com
 VoCAL Technologies, Ltd. T: +1(716) 688 4675
 Buffalo, NY 14228, USA F: +1(716) 639 0713

Status: Text proposal

ABSTRACT

In this document we provide text for include an optional Serial Concatenated
Convolutional Codes (SCCC) in the T1.413 Issue2. The text proposed will be in a
new point and will have a structure similar to the text of Trellis code version.

http://www.vocal.com

1.- Introduction:

In this document we provide text for include an optional Serial Concatenated Convolutional Codes in the
ANSI T1.413 Issue 2. The text proposed will be in a new point and will have a structure similar to the text of
Trellis code version.

2. Proposed text:

“6.9 Constellation encoder (Serial Concateneted Convolutional Codes) (baseline)

The Serial Concatenated Convolutional Coded (SCCC) proposed consists in two identical Wei's 16-state 4-
dimensional Trellis code as defined in the point 6.8. SCCC is optional to improve system performance. An
algorithmic constellation encoder shall be used to construct constellations with a maximum number of bits
equal to Ndownmax, where 8≤ Ndownmax ≤ 15).

Figure 26 represents the proposed encoder. This SCCC encoder is a combination of two simple encoders.
The input is a block of information bits. The two encoders generate parity symbols (u0 and u’0) from two
simple recursive convolutional codes. The dynamic interleaver “t” , permutes the original information bits
before input to the second encoder.

The output is formed by the information symbols (u1 and u2) and two redundant symbols (u0 and u’0). With
this redundancy it is possible to reach longer loops and to reduce the Peak to Average (PAR) power.

The interleaver can use a dynamic asignation of its values as it is show in table 16. This allow to use different
interleavers depending upon the bit rate given to the system a better performance. S is the value for the
generation of the pseudo-random sequence.

Table 16- Values of Rate, S and N

Rate S N
6000 35 2040
3000 30 1020
1500 25 510
750 20 255

Editor note: Rate and N are used for this section only. Check if they are used for other
purposes in the Recommendation.

 Note: it is possible to use a fix value for the interleaver ”t”.

6.9.1 Bit extraction

Data bytes from the data frame buffer shall be extracted according to a re-ordered bit allocation table b'i,
least significant bit first. Because of the 4-dimensional nature of the code, the extraction is based on pairs of
consecutive b'i, rather than on individual ones. Furthermore, due to the constellation expansion associated

with coding, the bit allocation table, b'i, specifies the number of coded bits per tone, which can be any integer
from 2 to 15. Given a pair (x,y) of consecutive b'i, x+y-1 bits (reflecting a constellation expansion of 2 bit
per 4 dimensions, or one half bit per tone) are extracted from the data frame buffer. These z = x+y-1 bits (tz
, tz-1 , ... , t1) are used to form the binary word u as shown in Table 13. The tone ordering procedure
ensures x ≤ y. Single-bit constellations are not allowed because they can be replaced by 2-bit constellations
with the same average energy. Refer to 6.8.2 for the reason behind the special form of the word u for the
case x = 0 , y > 1.

To terminate the Trellis at the end of the block in both encoder it is sufficient to use the method of the Figure
26. The switch is in position “A” for the first n cycles and in position “B” for the last four cycles, which will
flush the encoders with zeros. The decoder does not assume knowledge of the four tail bits. The 2 LSBs of
u are pre-determined, and only (x+y –3) bits shall be extracted from the data frame buffer and shall be
allocated to t3, t4, … tz.

Note: For the first encoder it is possible to use the same structure that Figure 19.

6.9.2 Bit conversion

The binary word u = (uz' , uz'-1 , ..., u1) determines two binary words v = (vz'-y+1 ,...,v0) and w = (wy-
1,...,w0), which are used to look up two constellation points in the encoder constellation table. For the usual
case of x>1 and y>1, z' = z = x+y, and v and w contain x+1 and y bits respectively. For the special case of
x = 0 and y > 1, z' = z+2 = y+1, v = (v1,v0) = 0 and w = (wy-1,...,w0). The bits (u2,u1) determine (v1,v0) and
(w1,w0) according to Figure 27.

The convolutional encoder shown in Figure 27 is form by two systematic encoder (i.e. u1 and u2 are passed
through unchanged) as shown in Figure 26. The convolutional encoder state (S3, S2, S1, S0) are used to label
the states of the trellis shown in Figure 21. At the beginning of a DMT symbol period the convolutional
encoder state is initialized to (0, 0, 0, 0).

The remaining bits of v and w are obtained from the less significant and more significant parts of (uz', uz'-1,
.. ,u3), respectively. When x >1 and y > 1, v = (uz'-y+2 , uz'-y+1, ..., u3, v1, v0) and w = (uz', uz'-1, ..., uz'-
y+3, w1, w0). When x = 0, the bit extraction and conversion algorithms have been judiciously designed so that
v1 = v0 = 0. The binary word v is input first to the constellation encoder, and then the binary word w last.

6.9.3 Coset partition and trellis diagram

In a trellis code modulation system, the expanded constellation is labeled and partitioned into subsets
("cosets") using a technique called mapping by set-partitioning. The four-dimensional cosets in Wei's code
can each be written as the union of two Cartesian products of two 2-dimensional cosets. For example, C40 =
(C20 × C21)È(C22 × C23). The four constituent 2-dimensional cosets, denoted by C20, C21, C22, C23, are
shown in Figure 20.

The encoding algorithm ensures that the 2 least significant bits of a constellation point comprise the index i of
the 2-dimensional coset C2i in which the constellation point lies. The bits (v1, v0) and (w1, w0) are in fact the
binary representations of this index.

The three bits (u1,u0,u’0) are used to select one of the 8 possible four-dimensional cosets. The 8 cosets are
labeled C4i where i is the integer with binary representation (u1,u0,u’0). The additional bit u2 (see Figures
27) determines which one of the two Cartesian products of 2-dimensional cosets in the 4-dimensional coset is
chosen. The relationship is shown in Table 17. The bits (v1,v0) and (w1,w0) are computed from
(u2,u1,u0,u’0) using the linear equations given in Figure 27.

Convolutional

 Encoders w = u’ u

w = u u

v = u
0 2

0 01

.

.
.

.

.
.

uz'

u
z'-1

uz'-y+3

uz'-y+2

uz'-y+1

u
4

u
3

u1

u1
u2

u2

u0

0 1 2

u1
u2

1 0 2v = u u⊕

⊕

⊕ ⊕

⊕

u’0
v0

w1

v2

v1

w2

wy-2

wy-1

v3

vz'-y

z'-y+1v

w0

 Concatenated

Figure 27- Conversion of u to v and w

u2

u1

u2

u1

D

D

DD+ +

S2

S1 S3

S0

D

D

DD+ +

S2

S0

S3S1

u0

u’0

t

Figure 26 - Finite state machine for Wei's encoder

Table 17 - Relation between 4-dimensional and 2-dimensional cosets

 4-D Coset u2 u1 u0 u’0 v1 v0 w1 w0 2-D Cosets

C40 0 0 0 0
 1 0 0 0

 0 0
 1 1

 0 0
 1 1

 C20 × C20
 C23 × C23

C44 0 1 0 0
 1 1 0 0

 0 0
 1 1

 1 1
 0 0

 C20 × C23
 C23 × C20

 C42 0 0 1 0
 1 0 1 0

 1 0
 0 1

 1 0
 0 1

 C22 × C22
 C21 × C21

C46 0 1 1 0
 1 1 1 0

 1 0
 0 1

 0 1
 1 0

 C22 × C21
 C21 × C22

C41 0 0 0 1
 1 0 0 1

 0 0
 1 1

 1 0
 0 1

 C20 × C22
 C23 × C21

C45 0 1 0 1
 1 1 0 1

 0 0
 1 1

 0 1
 1 0

 C20 × C21
 C23 × C22

C43 0 0 1 1
 1 0 1 1

 1 0
 0 1

 0 0
 1 1

 C22 × C20
 C21 × C23

C47 0 1 1 1
 1 1 1 1

 1 0
 0 1

 1 1
 0 0

 C22 × C23
 C21 × C20

Figure 21 shows the trellis diagram based on the finite state machine in Figure 19, and the one-to-one
correspondence between (u1, u0, u’0) and the 4-dimensional cosets. In the figures, S = (S3, S2, S1, S0)
represents the current state, while T = (T3, T2, T1, T0) represents the next state in the finite state machine. S
is connected to T in the constellation diagram by a branch determined by the values of u2 and u1. The
branch is labeled with the 4-dimensional coset specified by the values of u2, u1 (and u0 = S0 , see Figure 20).
To make the constellation diagram more readable, the indices of the 4-dimensional coset labels are listed next
to the starting and end points of the branches, rather than on the branches themselves. The leftmost label
corresponds to the uppermost branch for each state. The constellation diagram is used when decoding the
trellis code by the Viterbi algorithm. MAP decoder are optional to increase the reach of the system

6.9.4 Constellation encoder

For a given sub-carrier, the encoder shall select an odd-integer point (X, Y) from the square-grid constellation
based on the b bits of either {vb-1,vb-2, ...,v1,v0} or {wb-1,wb-2, ...,w1,w0}. For convenience of description,
these b bits are identified with an integer label whose binary representation is (vb-1,vb-2, ...,v1,v0), but the
same encoding rules apply also to the w vector. For example, for b=2, the four constellation points are
labeled 0,1,2,3 corresponding to (v1,v0) = (0,0), (0,1), (1,0), (1,1), respectively.

NOTE - v 0 is the first bit extracted from the buffer.

6.9.4.1 Even values of b

For even values of b, the integer values X and Y of the constellation point (X,Y) shall be determined from the
b bits {vb-1, vb-2, ..., v1, v0} as follows. X and Y are the odd integers with twos-complement binary
representations (vb-1, vb-3, ..., v1, 1) and (vb-2, vb-4,...,v0, 1), respectively. The most significant bits

(MSBs), vb-1 and vb-2, are the sign bits for X and Y, respectively. Figure 22 shows example constellations
for b = 2 and b= 4.

The 4-bit constellation can be obtained from the 2-bit constellation by replacing each label n by a 2 × 2 block
of labels as shown in Figure 23.

The same procedure can be used to construct the larger even-bit constellations recursively.

The constellations obtained for even values of b are square in shape. The least significant bits {v1, v0}
represent the coset labeling of the constituent 2-dimensional cosets used in the 4-dimensional Wei trellis code.

6.9.4.2 Odd values of b, b = 3

Figure 24 shows the constellation for the case b = 3.

6.9.4.3 Odd values of b, b>3

If b is odd and greater than 3, the 2 MSBs of X and the 2 MSBs of Y are determined by the 5 MSBs of the b
bits. Let c = (b+1)/2, then X and Y have the twos-complement binary representations (Xc,Xc-1,vb-4,vb-
6,...,v3,v1,1) and (Yc,Yc-1,vb-5,vb-7,vb-9,...,v2,v0,1), where Xc and Yc are the sign bits of X and Y
respectively. The relationship between Xc, Xc-1, Yc, Yc-1 and vb-1, vb-2, ..., vb-5 is shown in the Table 16.

The 7-bit constellation shall be obtained from the 5-bit constellation by replacing each label n by the 2 x 2
block of labels as shown in Figure 23.

Again, the same procedure shall be used to construct the larger odd-bit constellations recursively. Note also
that the least significant bits {v1,v0} represent the coset labeling of the constituent 2-dimensional cosets used
in the 4-dimensional Wei trellis code.

6.9.5 Interleaver design.

In a SCCC the interleaver establishes a relationship between portions of a codeword. For a good SCCC, we
can design an interleaver of permutation length “p” that maximizes the minimum Hamming weight generated
by weight two inputs. In a SCCC the interleaver establishes a relationship between portions of a code-word.
In the SCCC case because one of the inputs come from the outer encoder, the roll of the interleaver is not so
critical, for this reason the method proposed for the interleaver is to disperse symbols as widely as possible in
a “constellation way”. One effective method is to choose for each i ∈ [1,p] π(i)=p/3*i. An example of this
method is show in the figure 27.

100

100

500

500

1000

1000

 Figure 27. Interleaver for SCCC

