

 Technologies Ltd. http://www.vocal.com
90A John Muir Drive Email: sales@vocal.com
Buffalo, New York Tel: 716-688-4675
14228 Fax: 716-639-0713

© 2006 VOCAL Technologies Ltd.

Reed Solomon Coding

The VOCAL implementation of Reed Solomon (RS) Forward Error Correction (FEC) algorithms is
available in several forms. The forms include pure software and software with varying levels of
hardware acceleration utilizing UDI or other custom hardware instructions. Pure software solutions
are available in several different forms for both the encoder and decoder. Different versions allow
speed versus memory tradeoffs to be made, and allow efficient and easy expansion of the code for
assembly language optimization.

The Reed Solomon algorithms rely on special properties of finite-arithmetic Galois Field (GF)
operations. The use of hardware acceleration for these operations can be used to greatly improve
performance; for example, on the MIPS architecture, UDI/CorExtend instructions may be used for this
purpose. Multiple levels of hardware acceleration are available, including single cycle multiply and
inverse, as well as parallel multiplication and general-purpose bit-slicing/composite field operations.

VOCAL's embedded software libraries include a complete range of ETSI / ITU / IEEE compliant
algorithms, in addition to many other standard and proprietary algorithms. Our software is optimized
for execution on ANSI C and leading DSP architectures (TI, ADI, AMD, ARM, CEVA, LSI Logic ZSP,
and MIPS). These libraries are modular and can be executed as a single task under a variety of
operating systems or standalone with its own microkernel.

Algorithm Description

Reed Solomon codes are error-correcting codes that have found wide-ranging applications throughout
the fields of digital communication and storage. Some of which include:

• Storage Devices (hard disks, compact disks, DVD, barcodes, etc.)
• Wireless Communication (mobile phones, microwave links, etc.)
• Digital Television
• Broadband Modems (ADSL, xDSL, etc.)
• Deep Space and Satellite Communications Networks (CCSDS)

RS codes are systematic linear block codes, residing in a subset of the BCH codes called non-binary
BCH. It is block because the original message is split into fixed length blocks and each block is split into
m bit symbols; linear because each m bit symbol is a valid symbol; and systematic because the
transmitted information contains the original data with extra CRC or 'parity' bits appended.

 Technologies Ltd. http://www.vocal.com
90A John Muir Drive Email: sales@vocal.com
Buffalo, New York Tel: 716-688-4675
14228 Fax: 716-639-0713

© 2006 VOCAL Technologies Ltd.

These codes are specified as RS (n, k), with m bit symbols. This means that the encoder takes k data
symbols of m bits each, appends n - k parity symbols, and produces a code word of n symbols (each of
m bits).

Reed Solomon codes are based on a specialized area of mathematics known as Galois fields (a.k.a. finite
fields). These fields are of the form GF (p^m), where p is prime. RS makes use of Galois fields of the form
GF (2^m), where elements of the field can be represented by m binary bits. Hence, RS codes of the form
RS (2^8) lend themselves well to digital communication.

Primitive polynomials are of interest here because they are used to define the Galois field. A popular
choice for a primitive polynomial is:

p(x) = x^8 + x^7 + x^2 + x^1 + 1

This is also known as the 0x87 polynomial, corresponding to the binary representation of the polynomial's
coefficients excluding the MSB (i.e. 10000111). This specific polynomial is used in the CCSDS
specification for a RS (255, 223). In GF (2^8) there are 16 possible primitive polynomials.

 The VOCAL implementation has the ability to perform all combinations of RS (n, k) [n = 255, and 0 < k <
n], for any of the 16 possible Galois fields, including the 0x87 field used by CCSDS. Additionally, the
VOCAL RS modules can use any arbitrary generator polynomial for the calculation of the parity symbols.

Encoder

The Reed-Solomon encoder reads in k data symbols, computes the n - k parity symbols, and appends
the parity symbols to the k data symbols for a total of n symbols. The encoder is essentially a 2t tap
register where each register is m bits wide. The multiplier coefficients are the coefficients of the RS
generator polynomial. The general idea is the construction of a polynomial; the coefficients produced will
be symbols such that the generator polynomial will exactly divide the data/parity polynomial.

Decoder

The Reed-Solomon decoder tries to correct errors and/or erasures by calculating the syndromes for each
codeword. Based upon the syndromes the decoder is able to determine the number of errors in the
received block. If there are errors present, the decoder tries to find the locations of the errors using the
Berlekamp-Massey algorithm by creating an error locator polynomial. The roots of this polynomial are
found using the Chien search algorithm. Using Forney's algorithm, the symbol error values are found and
corrected. For an RS (n, k) code where n - k = 2T, the decoder can correct up to T symbol errors in the
code word. Given that errors may only be corrected in units of single symbols (typically 8 data bits), Reed-
Solomon coders work best for correcting burst errors.

 Technologies Ltd. http://www.vocal.com
90A John Muir Drive Email: sales@vocal.com
Buffalo, New York Tel: 716-688-4675
14228 Fax: 716-639-0713

© 2006 VOCAL Technologies Ltd.

Reed Solomon Implementations
The implementations below can be customized to work with other RS (n, k) codes to yield similar results
in performance.

• Optimized Software Implementation. The pure software implementation is dominated
computationally by multiplication over a finite field (Galois Field multiplication). The encoder
requires 71,181 cycles per codeword on a MIPS32 processor and the decoder requires 66,045
cycles.

• Scalar GF Multiply Support. This is the simplest form of VOCAL’s hardware acceleration. The
Scalar GF Multiply Support extends the capabilities of the MIPS32 processor by taking advantage
of MIPS Technologies CorExtend capability to decrease the number of cycles to 23,305 cycles to
encode and 9,174 cycles per codeword to decode on the MIPS32 processor.

• SIMD GF Multiply Support. The SIMD GF Multiply Support requires 128 bytes of local ROM
memory, but increases the performance to 3,918 cycles per megabit to encode and 3,078 cycles
per codeword to decode.

• RS Encode Kernel. The RS Encode Kernel uses 1024 bytes of local ROM memory to encode.
The number of cycles to process a codeword on a MIPS32 CPU falls to 2,702 cycles for encoding
and decoding only consumes 828 cycles with this implementation.

Table 1 – Reed Solomon Benchmarks

Reed Solomon Software Performance

The following table details performance numbers for a number of specific RS (n, k) implementations for
two general purpose processing architectures and one digital signal processor. Numbers are provided for
both decode in the presence of no error, as well as decode in the presence of maximum channel error.
Note that correcting errors requires more processing power than simply validating blocks, and that the
required processing power increases linearly with the error rate. Typical applications tend to keep the
error rate low such that active correction is not required.

The two digit hexadecimal number in each column specifies the GF (255) primitive polynomial used to
generate the underlying Galois field.

 Technologies Ltd. http://www.vocal.com
90A John Muir Drive Email: sales@vocal.com
Buffalo, New York Tel: 716-688-4675
14228 Fax: 716-639-0713

© 2006 VOCAL Technologies Ltd.

The listed performance numbers are:
• CPB - Cycles Per Block, how many CPU cycles are required to perform this step of the algorithm

for each block of data

• MBPS @ 1GHz - maximum throughput in MBits/sec for each 1.0 GHz of processing power (bit

rate measured on the data side, not the channel side.)

All measurements are for optimized C code for the particular architecture, compiled with GCC and -O4
optimizations. No hardware acceleration or SIMD instruction optimizations were used.

Table 2 – Reed Solomon X86 Performance

RS (255,191)
0x1D

RS (255,223)
CCSDS 0x87 RS (255,239) 0xCF RS (255,247) 0x2D RS (255,251) 0x63

CPB MBPS @

1GHz CPB MBPS @
1GHz CPB MBPS @

1GHz CPB MBPS @
1GHz CPB MBPS @

1GHz
Encode 10854 164.4 10552.5 181.2 6406.88 308.4 5075.25 395.6

Decode
(no errors) 38994 45.8 19597.5 97.6 9045 218.5 4422 454.1

Decode
(max
errors)

 120667 14.8 52511.25 36.4 20602.5 95.9 10251 195.9

Decode
(max
erasures)

Table 3 – Reed Solomon ARM LINUX Performance

RS (255,191)
0x1D

RS (255,223)
CCSDS 0x87

RS (255,239)
0xCF RS (255,247) 0x2D RS (255,251) 0x63

Platform
CPB MBPS

@ 1GHz CPB MBPS @
1GHz CPB MBPS

@ 1GHz CPB MBPS
@ 1GHz CPB MBPS

@ 1GHz
Encode 60000 25.47 25500 69.96 20250 94.42 14750 133.97 11250 178.49

Decode
(no errors) 57500 26.57 31750 56.19 18375 104.05 5166.67 382.45 2583.33 777.29

Decode
(max
errors)

449500 3.4 199875 8.93 90875 21.04 39833.33 49.61 17875 112.34

Decode
(max
erasures)

760000 2.01 345250 5.17 153500 12.46 80250 24.62 34041.67 58.99

 Technologies Ltd. http://www.vocal.com
90A John Muir Drive Email: sales@vocal.com
Buffalo, New York Tel: 716-688-4675
14228 Fax: 716-639-0713

© 2006 VOCAL Technologies Ltd.

Table 4 – Reed Solomon ARM LINUX Performance

RS (255,191)
0x1D

RS (255,223)
CCSDS 0x87

RS (255,239)
0xCF

RS (255,247)
0x2D RS (255,251) 0x63

Platform
CPB MBPS @

1GHz CPB MBPS @
1GHz CPB MBPS @

1GHz CPB MBPS @
1GHz CPB MBPS @

1GHz
Encode 190000 8.04 110000 16.22 65000 29.42 35000 56.46 20000 100.4

Decode
(no errors) 195000 7.84 100000 17.84 45000 42.49 25000 79.04 133333.33 150.6

Decode
(max
errors)

525000 2.91 240000 7.43 110000 17.38 55000 35.93 30000 66.93

Decode
(max
erasures)

680000 2.25 325000 5.49 155000 12.34 80000 24.7 40000 50.2

